Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Int J Mol Sci ; 23(3)2022 Jan 18.
Article in English | MEDLINE | ID: covidwho-1887210

ABSTRACT

The propensity towards platelet-rich thrombus formation increases substantially during normal ageing, and this trend is mediated by decreases in platelet responsiveness to the anti-aggregatory nitric oxide (NO) and prostacyclin (PGI2) pathways. The impairment of soluble guanylate cyclase and adenylate cyclase-based signalling that is associated with oxidative stress represents the major mechanism of this loss of anti-aggregatory reactivity. Platelet desensitization to these autacoids represents an adverse prognostic marker in patients with ischemic heart disease and may contribute to increased thrombo-embolic risk in patients with heart failure. Patients with platelet resistance to PGI2 also are unresponsive to ADP receptor antagonist therapy. Apart from ischemia, diabetes and aortic valve disease are also associated with impaired anti-aggregatory homeostasis. This review examines the association of impaired platelet cyclic nucleotide (i.e., cGMP and cAMP) signalling with the emerging evidence of thromboembolic risk in cardiovascular diseases, and discusses the potential therapeutic strategies targeting this abnormality.


Subject(s)
Cardiovascular Diseases/complications , Epoprostenol/metabolism , Nitric Oxide/metabolism , Thromboembolism/metabolism , Adenylyl Cyclases/metabolism , Cardiovascular Diseases/metabolism , Drug Resistance , Humans , Oxidative Stress , Signal Transduction , Soluble Guanylyl Cyclase/metabolism , Thromboembolism/etiology
2.
Heart Lung Circ ; 30(1): 36-44, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-912219

ABSTRACT

It is now 30 years since Japanese investigators first described Takotsubo Syndrome (TTS) as a disorder occurring mainly in ageing women, ascribing it to the impact of multivessel coronary artery spasm. During the intervening period, it has become clear that TTS involves relatively transient vascular injury, followed by prolonged myocardial inflammatory and eventually fibrotic changes. Hence symptomatic recovery is generally slow, currently an under-recognised issue. It appears that TTS is induced by aberrant post-ß2-adrenoceptor signalling in the setting of "surge" release of catecholamines. Resultant activation of nitric oxide synthases and increased inflammatory vascular permeation lead to prolonged myocardial infiltration with macrophages and associated oedema formation. Initially, the diagnosis of TTS was made via exclusion of relevant coronary artery stenoses, plus the presence of regional left ventricular hypokinesis. However, detection of extensive myocardial oedema on cardiac MRI imaging offers a specific basis for diagnosis. No adequate methods are yet available for definitive diagnosis of TTS at hospital presentation. Other major challenges remaining in this area include understanding of the recently demonstrated association between TTS and antecedent cancer, the development of effective treatments to reduce risk of short-term (generally due to shock) and long-term mortality, and also to accelerate symptomatic recovery.


Subject(s)
Heart Ventricles/physiopathology , Magnetic Resonance Imaging, Cine/methods , Takotsubo Cardiomyopathy/physiopathology , Ventricular Function, Left/physiology , Heart Ventricles/diagnostic imaging , Humans , Takotsubo Cardiomyopathy/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL